
Networking the seceder model: Group formation in social and economic systems

Andreas Grönlund* and Petter Holme†

Department of Physics, Umeå University, 901 87 Umeå, Sweden
(Received 29 November 2003; revised manuscript received 12 May 2004; published 16 September 2004)

The seceder model illustrates how the desire to be different from the average can lead to formation of groups
in a population. We turn the original, agent based, seceder model into a model of network evolution. We find
that the structural characteristics of our model closely match empirical social networks. Statistics for the
dynamics of group formation are also given. Extensions of the model to networks of companies are also
discussed.
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I. INTRODUCTION

Social networks have “community structure”—actors
(vertices) with the same interests, profession, age(and so
on), organize into tightly connected subnetworks, or commu-
nities[1–3]. Subnetworks are connected into larger conglom-
erates in a hierarchical structure of larger and more loosely
connected structures. Over the last few years the issue of
communities in social networks has ventured beyond sociol-
ogy into the area of physicists’ network studies[4–6]. The
problem of how to detect and quantify community structure
in networks has been the topic of a number of papers[2,7,8],
whereas a few others have been models of networks with
community structure[9–11]. In these models, the common
properties defining the community are external to the net-
work evolution (in the sense that an individual does not
choose the community to belong to by virtue of his or her
position in the network). In this paper we present a model
where the community structure emerges as an effect of the
agents personal rationales. We do this by constructing a net-
worked version of an agent based model—the seceder model
[12–15]—of social group formation based on the assumption
that people actively try to be different than the average. In-
dependence and the desire to be different play an important
role in social group formation[16], this might be even more
important in the social networking of adolescents. The im-
portant observation is that few want to be different from
anyoneelse, rather one tries to affiliate to noncentral group.
This type of mechanism is probably rather ubiquitous, so the
connotations of eccentricity are not intended for the name of
the model.(See Ref.[17] for a nonscientific account of the
formation of youth subcultures by these and similar pre-
mises.)

Another system where the networked seceder model can
serve as a model—or at least a direction for extension of
present models(see, e.g., Ref.[18])—is networks where the
vertices are companies and the edges indicate a similar niche.
(Such edges can be defined indirectly using stock-price cor-
relations [19].) The establishment of new companies are
naturally more frequent in new markets. Assuming new mar-

kets are remote to more traditional markets, the networked
seceder model makes a good model of such company net-
works.

II. PRELIMINARIES

A. Notations

The model we present produces a sequence(or time evo-
lution) of graphshGtj. Each graph in this sequence consists
of the same setV of N vertices, and a time specific set ofM
undirected edgesEt. The model defines a Markov process
and is thus suitable for a Monte Carlo simulation. The num-
ber of iterations of the algorithm defines the simulation time
t=1, . . . ,tmax.

We let dsi , jd denote the distance(number of edges in the
shortest path) between two verticesi and j . We will also need
the eccentricitydefined as the maximal distance fromi to
any other vertex.

B. The seceder model

The original seceder model[12] is based onN individuals
with a real numberssid representing the traits(or personality)
of individual i. The algorithm is then to repeat the following
steps.

(1) Select three individualsi1, i2, and i3 with uniform
randomness.

(2) Pick the one(we call it î) of these whoses-value is
farthest away from the averagefssi1d+ssi2d+ssi3dg /3.

(3) Replace thes value of a uniformly randomly chosen

agentj with ssîd+h, whereh is a random number from the
normal distribution with mean zero and variance one.

Note that the actual values ofs are irrelevant, only the
differences betweens of different agents. The output of the
seceder model is a complex pattern of individuals that stick
together in well-defined groups. The groups have a life cycle
of their own—they are born, spawn new groups, and die.
Statistical properties of the model are investigated in Ref.
[12], effects of a bounded trait space is studied in Ref.[13],
the fitness landscape is the issue of Ref.[14] and Ref.[15]
presents a generalization to higher-dimensional trait spaces.

Our generalization of this model to a network model is
based on the idea that if the system is embedded in a net-

*Electronic address: gronlund@tp.umu.se
†Electronic address: holme@tp.umu.se

PHYSICAL REVIEW E 70, 036108(2004)

1539-3755/2004/70(3)/036108(9)/$22.50 ©2004 The American Physical Society70 036108-1



work, then the difference in personality is implicitly ex-
pressed through the network position. Thus, the identity
number (or vector) s becomes superfluous in a network
model. The homophily assumption[20]—that like attracts
like—means that the difference in character between two
verticesi and j (defined asussid−ss jdu in the traditional se-
ceder model) can be estimated by the graph distancedsi , jd in
a networked model. The model we propose is then, starting
from any graph withN vertices andM edges, to iterate the
following steps.

(1) Select three different verticesi1, i2, and i3 with uni-
form randomness.

(2) Pick the oneî of these that is least central in the
following sense: If the graph is connected, vertices of highest
eccentricity are the least central. If the graph is disconnected
the most eccentric vertices within the smallest connected
subgraph are the least central. If more than one vertex is least

central, letî be a uniformly randomly chosen vertex in the
set of least central vertices.

(3) Select another vertexj in V\ hîj uniformly randomly.

If deg j ,degî +1, rewire all of j ’s edges toî and a random

selection of î ’s neighbors.(By rewire an edgesv ,wd of a
vertexv we mean thatsv ,wd is replaced bysv ,w8d, vÞw, in

E.) If deg j ùdegî +1, rewire j ’s edges toî, i ’s neighborhood

vertices and(if deg j .degî +1) to deg j −degî −1 randomly
selected other vertices.

(4) Go through allj ’s edges once more and, with a prob-
ability p, rewire these.

The rewiring of steps 3 and 4 are performed with the
restriction that no multiple edges or loops(edges that go
from a vertex to itself) are allowed. Steps 1–3 correspond
rather closely to the same steps of the original model. That

j ’s edges are rewired mainly to the neighborhood ofî (and î
itself) reflect the inheritance of trait value in the original

model—by the homophily assumption, the neighborhood ofî

will have much the same traits asî. The main difference
between the original and the networked seceder model is step
4 where some edges are rewired to distant vertices. The mo-
tivation for this step is that long-range connections exist in
real-world networks[21,22], and can in some situations be
even more important than the strong links within a group
[23]. This kind of rewiring, to obtain long-range connections
has been used to model “small-world behavior” of networks
[21] (i.e., a logarithmic, or slower, scaling of the average
intervertex distance for ensembles of graphs with a constant
average degree[4]).

To make the model consistent we also have to specify the
initial graph. As far as we can see, at least for finitep, this
choice is irrelevant—the structure of the generated graphs is
the same(or at least very similar). We will not investigate
this point further. Instead we fix the initial graph to an instant
of Erdős and Rényi’s random graph model[24] (for a mod-
ern survey of this model, see Ref.[25]): A graph with N
edges andM edges is constructed by starting from isolated
vertices and then iteratively introduce edges between vertex
pairs chosen by uniform randomness and with the restriction
that no multiple edges or loops are allowed. To be sure that

the structure of the random graph is gone we run the con-
struction algorithm 10N sweeps through every vertex before
the graph is sampled.(We justify this numbera posteriori
later.)

An illustration of the construction algorithm can be seen
in Fig. 1. A realization of the algorithm is displayed in Fig. 2.
The p value of this realization is zero. For the valuep=0.1
we use in most simulations the community structure is less
visible to the eye. Nevertheless—as we will see—the com-
munity structure is still substantial for much larger values of
p.

FIG. 1. Illustration of the networked seceder model.(a) In step
1 three vertices,i1, i2, andi3, are chosen at random.(b) In step 2 the

least central of the three vertices is relabeled toî. In step 3 a vertex

j is selected at random and(c) the edges ofj are rewired toî and îs
neighborhood(and to a set of random other vertices if necessary).
Note that, in(c), j is moved to the cluster it is rewired to. In step 4
j ’s edges are rewired with a probabilityp. The shaded areas repre-
sent tightly connected subgraphs.

FIG. 2. One realization of the networked seceder model. The
model parameters areN=50, M =150, andp=0. The indicated
groups are indentified with Newman’s clustering algorithm(see
Sec. II C). This realization has modularityQ=0.575, clustering co-
efficient C=0.530, and assortative mixing coefficientr =0.0456.
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C. Detecting communities

To analyze the structure of cohesive subgroups in our
model networks we use the community detection scheme
presented in Ref.[26]. This algorithm starts from one-vertex
clusters and(somewhat reminiscent of the algorithm in Ref.
[27]) iteratively merge clusters to form clusters of increasing
size with relatively few edges to the outside. The crucial
ingredient of this scheme is a quality function

Q8 = o
sPS

sess− as
2d, s1d

whereS is the set of subnetworks at a specific iteration of the
algorithm andess8 is the fraction of edges that goes between
a vertex ins and a vertex ins8, and as=os8ess8. The algo-
rithm performs a steepest accent inQ8 space—at each itera-
tion the two clusters that give the largest increase(or small-
est decrease) of Q8 are merged. The iteration having the
highestQ8 value—which defines the modularityQ—gives
the partition into subgroups.

D. Conditional uniform graph tests

One can argue that some network structures are more ba-
sic than others. Given such an assumption and a networkG,
an interesting issue is whether a certain structure, sayX, is an
artifact of a more basic structure, sayY. One way to do this
is by a conditional uniform graph test: One compares the
value ofXsGd with X averaged over an ensemble of graphs
with the value ofY fixed to YsGd. This has(since Ref.[28])
been a well established technique in social network analysis
and has recently been brought over to physicists’[29] and
biologists’ [30] network literature. A common assumption
[29–31] is that the degree distribution is such a very basic
structure. We make this assumption too and perform a con-
ditional uniform graph test with respect to the degree se-
quence of the networks. To sample networks with a given
degree sequence we use the idea of Ref.[31] to rewire the
edges of the network in such a way that the degree sequence
remains unaltered. More precisely we go through all edges
si , jdPE and perform the following.

(1) Construct the setE8 of edges such that ifsî , ĵdPE8

then replacingsi , jd and sî , ĵd by si , ĵd and sî , jd would not
introduce any loops(self-edges) or multiple edges.

(2) Pick an edgesî , ĵdPE8 by uniform randomness.

(3) Rewire si , jd to si , ĵd and sî , ĵd to sî , jd.
For every realization of the seceder algorithm we sample

nsample=ten randomized reference networks as described ear-
lier. The motivation for this rather low number is that all
quantities seem to be self-averaging(the fluctuations de-
crease withN) and many have symmetric distributions with
respect to rewirings(which implies that many realization av-
erages compensate for few rewiring averages). To further
motivate this smallnsamplewe compare withnsample=100 for
the smallest size(N=200, which, as mentioned, is most af-
fected by fluctuations) and find that the quantities typically
differ by 0.5% which we consider small.

III. THE COMMUNITY STRUCTURE OF THE SECEDER
MODEL

The key quantity capturing the degree of community or-
der in the network is the modularityQ (defined in Sec. II C).
In Fig. 3(a) we see that, if the average degree andp is kept
constant thenQ converges to a high value,Q<0.64 for p
=0.1 andM =3N. This value is much higher than the refer-
ence value from the randomized networks—this curve has a
peak aroundN=1500 and decays for largerN, larger sizes
would be needed to see ifQ converges to a finite value for
the randomized networks. With the analogy to the Watts-
Strogatz model(where a fractionp of a circulant’s[32] edges
is rewired randomly) we would say thatp=0.1 is a rather
high value, stillQ is much higher for the networked seceder
model than for random networks with the same degree dis-
tribution. From this we conclude that our model fulfills its
purpose—it produces networks with a pronounced commu-
nity structure just as the original seceder model makes agents
divide into well-defined groups in trait space. In Fig. 3(b) we
plot theM dependence ofQ for fixed N=600 andp=0.1. We
see thatQ decreases withM for both the seceder model and
the randomized networks. AsM approaches its maximum

FIG. 3. The modularityQ as a function of the model parameters.
(a) showsQ as a function ofN with M =3N andp=0.1.(b) displays
Q for different M for N=600 andp=0.1. In (c) we plot the p
dependence ofQ for N=200 andM =600. The gray line in(a) is a
fit to an exponential. All error bars are smaller than the symbol size.
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value NsN−1d /2 the curves will converge(since the fully
connected graph is unique), but the figure shows that the
curves are separated for a wide parameter range. More im-
portantly it suggests that the quantityQ should be rescaled
by some appropriate function if networks of different aver-
age degree are to be compared. In the rest of our paper,
however, we will keep the degree constant. In Fig. 3(c) we
show thep dependence ofQ. As expectedQ decays monoto-
nously, in fact almost linearly, withp. The curves for the
seceder model converge to the curve of the randomized net-
works asp→0. Q of the randomized reference networks is
almost p independent. The fact that it is not completelyp
independent means that the degree distribution of the seceder
model must vary withp. We will strengthen this claim later.

Figure 4 shows the size dependence ofb—the number of
groups. We see that this function can be well described by a
constant plus a power law

A + bb s2d

(whereA is a constant) with an exponentb=0.400s6d for the
seceder model andb=0.193s6d for the random networks
with the same degree distribution. The average community
size is given byN/b and will therefore also behave as a
power law, with exponent 1−b=0.600s6d. This fact—that
the number and average size of the communities grow with
N—does not seem contradictory to the real world to us.
Since a community, both in a social and economical interpre-
tation of the model, does not need to be controlled or super-
vised there is no natural upper limit to the number of com-
munity members. Furthermore, there is no particular
constraint on the number of communities present in real
world systems. A thorough study of the scaling exponents
would be interesting, but falls out of the scope of the present
paper.

In Fig. 5 we display the average geodesic lengths within a
communityl intra and between vertices of different communi-
ties l inter for parameter valuesM =3N andp=0.1. To be pre-
cise, we consider the largest connected component(which
typically contains 99% of the vertices), and define

l intra =
1

Nintra
o
i=1

b

o
v,wPBi

dsv,wd s3ad

and

l inter =
1

SN

2
D − Nintra

o
i=1

b

o
vPBi

o
w¹Bi

dsv,wd s3bd

whereBi is the ith cluster and

Nintra = o
i=1

b S i

2
D s4d

is the number of pairs of vertices belonging to the same
community. As seen in Figs. 5(a) and 5(b) both l intra andl inter

FIG. 4. The number of groupsb as a function of the system size
N. The other parameter values areM =3N andp=0.1. The line is a
fit to a power-lawabb. For this set of parametersb=0.400s6d for
the seceder model and 0.193s6d for the reference graphs of the
conditional uniform graph test. All error bars are smaller than the
symbol size. Note the double-logarithmic scale.

FIG. 5. Average distance between, and within, clusters(as identified by the algorithm described in Sec. II C). The gray lines are fits to
an exponential form. The slope of the original is the same in(a) and(b) [also the rewired line has the same slope in(a) and(b)]. All error
bars are smaller than the symbol size.
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grow logarithmically as functions ofN with the same slope
in a semilogarithmic plot. A logarithmic scaling of the aver-
age shortest path length(which of course also holds) is ex-
pected(cf. Ref. [33]). But we could not anticipate the lack of
qualitative difference between distances between vertices of
the same and different clusters. The actual values ofl intra is
significantly smaller thanl inter and this difference holds as
N→`: As seen in Fig. 5(c) l inter− l intra converges to 0.60s1d.
The same value for the randomized graphs isl inter− l intra
=0.204s8d which is expected—the detected communities in
the networked seceder model are more well defined and
tight-knit than the corresponding communities in a random
network with the same degree distribution.

IV. OTHER STRUCTURAL CHARACTERISTICS

Apart from the quantities of the previous section(all di-
rectly related to the community structure), we also look at
some other well established structural measures: The degree
distribution, the clustering coefficient, and the assortative
mixing coefficient.

A. Degree distribution

Following the works of Barabási and co-workers[34–36]
the degree distribution has been perhaps the most studied
network structure. In some social networks—of telephone
calls [37], e-mail communication[38], and the network of
sexual contacts[39]—the degree distribution fits well to a
power-law functional form. Other social network studies re-
port right skewed degree distributions that deviate from a
power law in either the high- or low-k limit [40–43]. Yet
other studies have found social networks with Gaussian de-
gree distributions[40,44,45], or exponential degree distribu-
tions [3,46]. We conclude that the degree distribution of so-
cial networks still is an open question with, most likely, not a
single solution—different social networks may follow differ-
ent degree distributions. The degree distribution of the net-
worked seceder model is displayed in Fig. 6. We note that
Pskd has an exponential tail, notably larger than the Poisson
degree distribution. Clearly this falls into one of the cases
mentioned earlier.

B. Clustering coefficient

The clustering coefficientC measures the fraction of con-
nected triples of vertices that form a triad. This type of sta-
tistics has been popular since Ref.[21]. The definition we
use is slightly different from that of Ref.[21]:

C =
cs3d
ps3d

, s5d

wherecsnd denotes the number of representations of circuits
of length n and psnd denotes the number of representations
of paths of lengthn. (By “representation” we mean an or-
dered triple such that one vertex is adjacent to the vertex
before or after. For example, a triangle has six
representations—all permutations of the three vertices.) This
definition is common in sociology(although sociologists em-

phasize triad statistics for directed networks)—see Ref.[47]
for a review—but is also frequent in physicists’ literature
since Ref.[48]. A plot of C as a function ofN is shown in
Fig. 7(a). We see thatC for the seceder model converges to a
constant value rather rapidly. Similarly theC for the rewired
networks goes to zero roughly over the same time scale. The
fact that community structure induces a high clustering is
well known and modeled[49], as is the fact that the cluster-
ing vanishes like 1/N in a random graph with Poisson degree
distribution [4].

In Fig. 7(b) we plot the local clustering coefficient

Cv =
uGvuE

Sk

2
D s6d

as a function of the degreek of the vertex(uHuE denotes the
number of edges in a subgraphH, Gv is the neighborhood of
v). Cv [21] measures how well connected the neighborhood
of v is—if Cv=0 none of the vertices inv’s neighborhood
has an edge to any other, ifCv=1 there is an edge between
each pair of vertices inv’s neighborhood. We find that for the
seceder model the local clustering coefficient is roughly in-
versely proportional to the degree. For the rewired reference
network, on the other hand,Cv is independent of the degree.
It is known that many real-world networks, including social
networks, show the sameCv,k−1 scaling as the seceder
model [50]. It is furthermore known that some simple net-
work models, like the Barabási-Albert model[34], has a
k-independent local clustering—just as the randomized ref-
erence networks[50].

C. Degree-degree correlations

The assortative mixing coefficient[51] is the Pearson cor-
relation coefficient of the degrees at either side of an edge

FIG. 6. Degree distribution of the networked seceder model.
The model parameters areN=1800, M =5400, andp=0.1. The
squares indicate the degree distribution of a random graph with the
sizes(N andM), i.e., the initial network before the iterations of the
seceder model commence.
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r =
4kk1k2l − kk1 + k2l2

2kk1
2 + k2

2l − kk1 + k2l2 , s7d

where subscripti denotes theith argument and averaging is
over the edge set.r is known to be positive in many social
networks[51,52]. It has been suggested that this assortative
mixing can be related to community structure[53]. Against
this backdrop it is not surprising to note that the networked
seceder model produces networks with markedly positiver,
see Fig. 7(c). The reference networks with the same degree
sequences converge to zero from negative values, as also
observed in Ref.[42]. It has been argued[29,54] that net-
works formed by agents without any preference for the de-
grees of the neighboring vertices gets negativer from the
restriction that only one edge can go between one pair of
vertices. This is probably the reason for the negativer values
of the rewired networks.

In Fig. 7(d) we give a more detailed picture of the degree-
degree correlations, we plot the average neighbor degree

knnsvd =
1

kv
o

wPGv

kw s8d

against the degree[55]. We see that the dissortativity mainly
stems from that the vertices of low degree tends to connect to
other vertices of low degree. For vertices of mid and high
degree,knnskd is almost independent ofk.

V. CHARACTERISTICS OF COMMUNITY DYNAMICS

In this section we look at the dynamics of the communi-
ties. To do this we need criteria for if a clusterBk

t at timet is
the same as clusterBk8

t−1 at time t−1. The idea is to find the
best possible matching of vertices between the partition into
clusters of the two consecutive time steps(see Fig. 8). To
give a mathematical definition, letBt=hBt

1, . . . ,Bt
bstdj be the

partition of Gt into clusters by the algorithm described in
Sec. II C and letb8=minfbstd ,bst−1dg. We define a mapping

FIG. 8. Illustration of the identification of clusters at consecu-
tive time steps. The vertex set is represented by the horizontal line.
The vertical tics demarcate cluster boundaries. The communities at
consecutive time step are matched so that the overlap(the horizon-
tal sum of shaded segments) is maximized.

FIG. 7. Common structural measures.(a) shows the clustering coefficientC as a function of the number of vertices for the seceder model
and rewired networks.(b) shows the local clustering coefficientCv as a function of the degreek of v. The gray line is inversely proportional
to k. (Note the double logarithmic scale.) (c) displays the corresponding plot of the assortative mixing coefficient.(d) shows the average
degree of the neighbors of a vertex as a function of the vertex’s degree. The network parameters areM =3N and p=0.1, in (b) and (d) N
=1800. Error bars are shown if they are larger than the symbol size.
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f from b8 elements off1,bst−1dg to b8 elements off1,bstdg
such that the overlap

yt8 = o
k=1

b8

uBt−1
k ù Bt

fskdu s9d

is maximized(u ·u denotes cardinality). Let ystd denote this
maximizedyt8 value. To calculate this overlap we use the
straightforward method of testing all matchings. In principle,
this algorithm runs in exponential time, but since the number
of groups is typically rather low, systems of a few hundred
vertices are numerically tractable.

The evolution of the group structure, with the group struc-
ture identified as described above, is displayed in Fig. 9. In
Figs. 9(a) and 9(b) we see the time evolution of the assorta-
tive mixing coefficientr and the clustering coefficientC,
whose average size scaling was studied in Sec. IV. We note
that the assortative mixing coefficient fluctuates rather much.
Even though it is mostly positive(remember that the average
value is significantly positive) it can also be negative. This is
likely to be a finite size phenomenon—as the assortative
mixing coefficient is self-averaging[42], larger systems

would not fluctuate much and have stable positive values[as
seen in Fig. 7(b)]. The clustering coefficient as displayed in
Fig. 9(b) shows a more stable evolutionary trajectory. Over a
time scale roughly corresponding toN=100 updating stepsC
goes from the value of the initial Erdős-Rényi graphs to the
higher clustering coefficient of the networked seceder model.
This is natural since it is also roughly the time scale for all
vertices to be picked and rewired once. The value of the
modularityQ, displayed in Fig. 9(c), shows a similar behav-
ior as the clustering coefficient as it increases from the value
,0.4 of the original random graph to,0.6 of the seceder
model.C and Q seem to be strongly correlated, something
that seems very logical in the context of the seceder model—
the clustering coefficient increases when a high degree vertex
is rewired to a specific cluster, a process that also strengthens
the community structure. If this strongC-Q correlation is a
ubiquitous property it is an interesting problem for future
studies. In Fig. 9(d) we plot the overlapy which fluctuates
between 25 and 75 with an average well below 50. These
values are lower than we expecteda priori, as it means that
identity of more than half the group members change at a
typical time step. Just as the fluctuations inr, we expect the
fluctuations in the cluster structure to decrease with system
size, thereforey/N will increase withN. In Fig. 9(e) the time

FIG. 9. Community dynamics for a typical run with the parameter valuesN=100,M =300, andp=0 and 100 iterations of the networked
seceder model. The different panels show different statistics for one single run of the algorithm.(a) shows the time evolution of the
assortative mixing coefficient.(b) shows the clustering coefficientC. (c) shows the modularityQ. (d) shows the maximal overlapy between
consecutive time steps.(e) illustrates the time evolution of the communities. A vertical cross section of(e) gives the respective relative sizes
of the different clusters. The clusters are sorted horizontally according to age—the oldest clusters are in the top of the panel.
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development of different cluster sizes is illustrated. A hori-
zontal cross section gives the size partitioning of the vertex
set at a given time step. A demarcated area represents a
group. Older groups are above younger groups. An observa-
tion from Fig. 9(e) is that groups typically live between one
and 100 time steps. The lifetime scale of groups seems to
coincide with that of the initial relaxation to the seceder
equilibrium. We also note that there seems to be no particular
correlation between age and stability or size, a situation that
would have produced skewed lifetime or cluster-size distri-
butions.

The observations in this section were checked for a few
other runs and seem to be representative. Since they do not
hint some surprising phenomena we do not conduct any ex-
tensive statistical survey of the dynamical properties.

VI. SUMMARY AND CONCLUSIONS

We have proposed a model for network formation based
on the seceder model. The model captures how a community
structure can emerge from the desire to be different, both in
social and economic systems. The community structure of
our model is analyzed with a recent graph clustering scheme.
This scheme has the advantage that it gives a measure of the
degree of community structure in a network—the modularity
Q. We see that theQ is much higher for our model networks
than for random reference networks with the same degree
distributions. Both the number of groups and the average
size of groups grow as power laws with sublinear exponents.
Both the average geodesic distance between vertices of the
same and different clusters grow logarithmically; the differ-

ence between these, however, is much larger for the net-
worked seceder model than for the random reference net-
works. The general picture is thus that the networked seceder
model generates well-defined communities just like the
agents of the original seceder model gets clustered in trait
space.

The networked seceder model gives networks of high
clustering and positive assortative mixing by degree—
properties that are known to be characteristic of acquaintance
networks. The degree distribution has a peak around the av-
erage degree and exponentially decaying—also that consis-
tent with real world observations.

The dynamics of the communities was briefly investigated
by defining a mapping between consecutive time steps that
maximizes an overlap function. Using this method we con-
clude that the speed of the dynamics is set by the size of the
system. We see that the clustering coefficient and modularity
are strongly correlated and that older groups are not neces-
sarily larger than younger.

To epitomize, the networked seceder model gives a
mechanism of emergent community structure that is different
from earlier proposed mechanisms in network models
[9–11]. The mechanism is arguably present in, at least, social
networks[16]. We speculate that this model can be applied to
networks of companies that are linked if they are active in
the same market.
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